跨境电商一人搞定?我们雇阿里国际的AI开了家店赚遍全球市场要知道,在现实世界中的大多数小微企业,其实面临的是人才短缺的困境。在这种情况下,AI非但没有替代任何人,反而为小微企业补充了源源不断的人才。
而作为接触AI最早,也是被改造最深的行业,如今的跨境电商已经成为了一个有着10万亿级的超大市场。
不同款式衣服的KV设计怎样才能抓人眼球?需要雇佣什么形象的模特?如何针对不同国家进行介绍页翻译?这种种选择的组合,必然有最优解。
就拿电商拍摄费用来说吧:在国内,做一组商品图最少200元起步,若要聘请欧美国外模特拍摄,最少也得要大几千。拍摄之后,再让美工修图,每月还得平均支出8000-15000元。
这还没完,一件商品,若想面向全球市场销售,就得登录不同的平台,还需要语言和素材的本地化表达。
有了这些平面图之后,我们不仅可以应用其他背景作为主页展示,再者可以让虚拟模特上身,呈现不同效果。
如此一来,我们只需坐在电脑前点一点鼠标,就能把手里的商品全给上架了,极大地节省了高昂的模特拍摄和后期制作成本。
据统计,在AI虚拟试穿的加持下,不仅商品的销量能翻一番,而且消费者对商品喜爱度也提升了1倍。
我们要做的,就是把和产品有关的信息都贴上来,AI就会自动根据品类特征和用户购买决策,剔除无用的内容并快速生成高流量标题。
一个出彩的广告图片,在设计布局、创意文案、背景图片上都有玄机,会对广告投放效果产生切实的影响。
因为大部分促活广告是以动态「选品池」形式投放,而一个品池便包含了上千万的商品量,仅仅靠人肉投放,是无法针对素材完成优化的。
文本方面,基于海量商品数据训出来多语言创意文案生成大模型,可根据投放商品信息、投放国家、人群,进而生成更具个性化和吸引力的卖点。
在上面这个过程中,有着多模态识别+多语言文本生成+AI图片处理+投放效果RL等多种AI能力加持。结果就是,让广告制作成本直降3%,同时广告ROI提升了5%。
面对这位用户的评论「制作廉价」,AI会这样回复:「我们知道,我们便宜的价格或许并不总是能满足您的期望。但我们一直致力于以实惠的价格提供优质的产品」
在对话过程中,通过调用产品API和物流API,AI可以回答用户的大部分关于产品和物流情况的疑问。
面对消费者的无理由退货退款申请,如果每次都把商品从海外运回来,成本会非常高;但如果不运回来,货损又会非常大。
然后在多模态技术的加持下,分析用户留言、退款凭证(货值损坏程度)、交易快照、物流路线等数据,进而理解纠纷的原因并计算出部分退款的金额。
相比之下,Chargeback Agent会基于模型的多模态能力来理解订单、履约、物流、商品,以及抗辩理由等相关信息,然后自动收集并组装证据,最终实现详细抗辩材料的一键生成。
总而言之,从商品上架发布,到营销投放、店铺运营,再到售后服务,AI已经完全贯穿到跨境电商全链路中。
人们都说,2023年也是AI电商的元年。经过一年多的发展,AI电商早已从炒作阶段,进入了成熟的应用阶段。
这一领域之所以越来越热,一是因为全球电商的体量本来就很大,二是随着AI电商应用越来越多,其落地路径逐渐明朗起来。
高盛的一份报告称,全球电商在2023年销售额达3.6万亿美元,预计24年将同比增长8%,到28年将达到5万亿美元。
再从供应端来看,AI的兴起,加速了一些企业推陈出新的进程。比如珠宝类企业,从设计、开模、模特拍摄、测品、上新,最少经历几个月的周期。
而现在,企业新品上线的工作流被AI重塑,从设计,到AI生成各种效果图,吸睛文案、测品,再到基于大数据分析,甚至AI能创造更高效的匹配机制。
商家们已经熟练地利用这些AI利器,生成文案,处理翻译,商品图设计等等,大大减少了大量重复繁琐的工作。
另有德勤报告佐证,26%的受访营销者已经在使用GenAI生成营销内容,而且还有45%的人打算在2024年底之前使用这项技术。
亚马逊发布的AI评论整合功能,提炼过往买家的评价,总结一段话置顶。AI合身功能,能够让用户在线试穿衣服。
还有今年2月,亚马逊「电商版ChatGPT」——Rufus发布,能够以问答形式,帮买家出谋划策。
阿里国际所要做的,就是给大家提供一个共用的AI基础设施,然后来解决所有这些业务在电商当中的AI需求。
我们需要去想象,一个坐在深圳做3C产品的工厂,一个义乌倒腾百货的贸易商,或者是一个在广州通过做档口生意,在淘宝上、拼多多上做了很多年电商,想要做出口时,会遇到哪些困难?
在早期,阿里国际团队基于40多个场景,把AI能力快速、松耦合地集成到现有的业务场景和产品体系里。
另一方面,也需要在规模化产品上用PAAS这样的平台,结合更加统一模型的方式,才能避免碎片化,获得更好的推理成本和更大的规模效应。
以前,是所有人看同一个内容商品,现在AI可以无限生成、海量生成,就可以生成「千人千面」的内容。
绝不仅仅是这样。在阿里国际团队看来,这可能涉及到这整个系统和整个数据设计模式上,以及本身在算法底层上去构建商品的表达和呈现。
目前,人类语言表述已经做了足够高的抽象,不同国家、民族的语言,已经可以很好地表达所有抽象逻辑和具体物理对象的逻辑,但在视觉上,仍然是一块开放的领域。
2023年4月成立,阿里国际AIBusiness已初具百人团队规模,对自身定位却是——我们不是一个训练基础模型的团队。
再者,为了控制成本,很多商业工具需要控制成本。阿里国际希望把多语言做好,以更低成本更优效果,让LLM去做多语言翻译。
它基于海量高质量多语言数据训练,其中小语种预料有2.5T token,可支持30+小语种,有8B/57B/72B等不同参数规模的模型。
假设客户因为衣服颜色发错退货,拍过来一张照片,衣服究竟是黑蓝的还是黑的,需要AI用「眼睛」去辨认。
阿里国际的多模态大模型MarcoPolo-VL,基于业界原创结构化嵌入对齐模型(SEA)训练调优,可提供7B/14B模型,而且同等参数效果下,超越了已知的开源模型。
AIGC有不同的业务平台,对于商家们来说,最便捷的方式是能够在一个平台上,完成整个运营涉及到的流程。
阿里PAAS服务可以让模型推理服务成本大大降低,能够以百张量级推理卡支持每日数千万次AI服务调用Bsports官方网站。
如下是他们在PAAS上的布局,基于底层阿里云等基础设施,构建了一套端到端的训练、推理、应用完整技术链,不同应用场景得以在统一的AI应用引擎、模型工作台、应用构建器等产品上实现高效迭代,从而给各个业务用好AI提供一套共享的应用设施。
经过一年多的努力和尝试,阿里国际在40+应用场景中,已经赋能50万中小商家,超1亿件商品信息得到了优化。
张凯夫表示,当场景能够用AI产生实际价值的时候,我们在过去半年内发生的故事,就是AI的使用量开始大幅上升。
通过翻译、换模特、涂抹黑词、卖点生成等这些用AI洗一遍澡的环节,团队很自信:产品拿到美国消费者面前,他们能看懂、想买、愿意下单!
一位商家表示,没有AI前,只有一张手机拍摄的商品图。使用真实场景的图像虽然拍摄成本大,但放在平台上却显得平平无奇。
生成的图片光影不但和真实拍摄的不相上下,还能套用海量的营销图模板,这些模板由海外设计师根据当地风格设计,不光成本降低,点击率也嗖嗖提升。
比如,速卖通平台的显示器top商家Zeuslap,就是从2023年11月开始使用阿里国际AI的图像生成的功能。
无论是店铺装修的banner、商品场景图、商详图、YouTube和TikTok的封面图等,都是AI完成的。
从前,商家需要花很多时间在找素材和设计上,还得自己动手PS。现在只要选择模版,上传商品,就可以轻松搞定商品图营销图了,巨省时间。
本文为专栏作者授权创业邦发表,版权归原作者所有。文章系作者个人观点,不代表创业邦立场,转载请联系原作者。如有任何疑问,请联系。
智能+中国主平台,致力于推动中国从互联网+迈向智能+新。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人对人类社会与文明进化的影响,领航中国新智能时代。
扎克伯格最新创业分享:下一代大公司将建立在开源 AI 基础上;创业者应关注团队早期文化,Meta PM 都是转岗来的